Слово «бином» означает двучлен – сумма двух слагаемых. Известны формулы сокращенного умножения: $(a + b)^2 = a^2 + 2ab + b^2$, $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Обобщением этих формул является формула, называемая формулой бинома Ньютона:

$$(a+b)^n = C^0{}_n a^n b^0 + C^1{}_n a^{n-1}b + C^2{}_n a^{n-2}b^2 + \dots + C^{n-1}{}_n ab^{n-1} + C^n{}_n a^0 b^n.$$

Числа C^0_n , C^1_n , ..., C^n_n , входящие в формулу, принято называть биномиальными коэффициентами, которые определяются так:

$$C^{k}_{n} = \underbrace{n!}_{k!(n-k)!},$$

Можно вычислить все биномиальные коэффициенты для любого п путем непосредственного перемножения п множителей (а + b), раскрытия скобок и приведения подобных членов. Правда, математикам древности и средневековья сделать это мешало отсутствие алгебраической символики.

Коэффициенты можно расположить в треугольной таблице, где каждый элемент в строке (кроме крайних) равен сумме двух элементов предыдущей строки, стоящих над ним:

$$C_0^0$$
 C_1^0 C_1^1
 C_2^0 C_2^1 C_2^2
 C_3^0 C_3^1 C_3^2 C_3^3
 C_4^0 C_4^1 C_4^2 C_4^3 C_4^4 C_4^4

Этот треугольник часто называют треугольником Паскаля. Свойства треугольника Паскаля тесно связаны с биномом Ньютона. В Иране эту схему называют треугольником Хайяма. Китайцы называют его треугольником Яна Хуэя или Цзя Сяня.

1			k	0	1	2	3	4	5	-	7	0	_
			к	U	1	2	3	4	3	6	/	8	9
	n -	k											
	0			1	1	1	1	1	1	1	1	1	1
	1			1	2	3	4	5	6	7	8	9	
	2			1	3	6	10	15	21	28	36		
	3			1	4	10	20	35	56	84			
	4			1	5	15	35	70	136				
	5			1	6	21	56	136					
	6			1	7	28	84						
	7			1	8	36							
	8			1	9								
	9			1									

Формула носит имя великого английского физика и математика Ньютона, хотя это неверно с точки зрения истории математики. Эта формула была известна задолго до Ньютона многим ученым разных времен и стран. В чем же заслуга Ньютона, имя которого носит эта формула? В том, что он распространил ее на любое действительное n, т. е. он показал, что формула верна и тогда, когда n является рациональным или иррациональным, положительным или отрицательным числом. В 17 веке Ньютон был первым человеком в мире, начавшим систематически употреблять в алгебре показатели, отличные от целых положительных.

История биномиальной теоремы еще раз убеждает нас в том, что всякое важное открытие не возникает неожиданно в голове исследователя, а подготавливается долгой, часто безвестной работой его предшественников. Сам Ньютон как-то заметил, что не достиг бы своих эпохальных открытий, если бы не стоял на плечах гигантов.

Формула бинома Ньютона и формулы разложения на множители суммы и разности степеней часто используются в математике для решения различных задач: на доказательство делимости, сокращение дробей, приближенные вычисления. Для решения комбинаторных задач; в комбинаторике, в том числе, в математической статистике и логике; для исследования функций. Бином Ньютона применяется при доказательстве Теоремы Ферма, в теории бесконечных рядов и выводе формулы Ньютона-Лейбница.

В художественной литературе «бином Ньютона» употребляется как фразеологизм. Шутливая фраза, применяется по отношению к простой задаче, которую некоторые ошибочно считают непосильной для выполнения. Когда хотят подчеркнуть, что собеседник преувеличивает сложность задач, с которыми он столкнулся, говорят: «Тоже мне, бином Ньютона!» То есть, бином Ньютона – это сложно, а у тебя какие проблемы!

В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти: «Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая карьера.»

В романе «Мастер и Маргарита» М. А. Булгакова: «Подумаешь, бином Ньютона! Умрет он через девять месяцев, в феврале будущего года, от рака печени в клинике Первого МГУ, в четвертой палате».

Роман Е. Н. Вильмонт получил название «Мимолетности, или Подумаешь, бином Ньютона!».

Позже это же выражение «Подумаешь, бином Ньютона!» упомянуто в фильме «Сталкер» А. А. Тарковского.